THE OWNERS OF OLIS RSM 1000 SYSTEMS

Each of these groups is making brilliant breakthroughs with their OLIS RSM 1000. When will your name join these?

upcoming (*) to first (Blake) as of November 2000.

Wayne L. Backes Louisiana State University

Christie G. Brouillette University of Alabama @ Birmingham

Lawrence E. Welch Knox College

Marc L. Pusey NASA Flight Center

James W. Lee Oak Ridge National Laboratory

Ronald Wetzel
University of Tennessee Medical Center

Lawrence R. Dick
Millennium Pharmaceuticals

Tom Wydrzynski Australian National University

James Espenson Iowa State University

Steven Smith SUNY at Stony Brook

Andrew Pacheco University of Wisconsin

Cleon W. Goodwin US Army Inst of Surgical Research

Thomas P. Sakmar Rockefeller University

James Mayer University of Washington

Daniel Scherson Case Western Reserve University

Wilfred A. van der Donk University of Illimois

Mark P. Jensen Agronne National Laboratory

Wim Jiskoot University of Utrecht

Josef Michl University of Colorado

David M. Bartels Argonne National Laboratory

Kenneth Hicks Norfolk State University

Robert C. Woodworth University of Vermont

Stephen W. Ragsdale University of Nebraska

Oliver Ernst Charite Humboldt Univ.

Kazuya Taniguchi Hokkaido University

John Bullock Central Washington Univ.

Richard G. Finke Colorado State University

Pusan Univ., South Korea

Robert Scarrow Haverford College

Marcia Holden NIST

Xiaoping Zhang Hubbard-Hall, Inc.

Siriam Krishnaswamy Philadelphia Children's Hosp.

Thomas D. Bolden Alcorn State University

Anthony W. Linnane Centre for Molecular Biology

Ania Knap Novartis Corporation

Jack Norton Columbia University

Isao Morishima Kyoto University

John Whitmarsh UI Urbana

Ikuo Momohara Forest Products Research Inst.

Algirdas J. Jesaitis Montana State University

Sarojini Padmaja Unilever Research US

Wilfredo Colón Rensselaer Polytechnic Inst.

Paul Cook Univ. of Oklahoma

William Alworth Tulane University

Ken Nickerson Univ. of Nebraska

Lisa Szczepura Illinois State University

Gloria Ferreira Univ. of South Florida

William Van Antwerp Minimed Technologies

Gary Cecchini UCSF VA Medical Ctr.

Eric Scharin Covance Biotechnology

David Goodin Scripps Research Institute

Robert Birge Syracuse University

Dixie Goss CUNY, Hunter College

Timothy Deming UC Santa Barbara

Clarence Broomfield US Army Research Inst

Daniel B. Kim-Shapiro Wake Forest University

Michael Schimerlik Oregon State University

Patrick Hoggard Santa Clara University

Rona Ramsay University of St. Andrews

Michael D. Johnson New Mexico State Univ.

W. David Wilson Georgia State University

Harry Dailey University of Georgia

Paavo Kinnunen University of Helsinki

Andrew Nordquist Air Products & Chemicals

Rebecca Cowling Wyeth Ayerst Pharm

Robert Byrne U of S FL Marine Science

Burton J. Litman NIAAA & NIH

Sarah A. Green Michigan Tech Univ

William Potter University of Tulsa

Paul Kolodner AT&T Bell Labs

Alan Hatton

John Spudich UT Medical Branch

Brian A. Fox UWM Enzyme Institute

Claude F. Bernasconi UC Santa Cruz

A. Grant Mauk Univ. of British Columbia

Fu-Ming Chen Tennessee State University

Antonio Peña National Univ. of Mexico

Alan L. Balch UC Davis

Robert S. Phillips University of Georgia

D. Scott Bohle University of Wyoming

James Cowan Ohio State University

Mitsuyuki Umino Astech Corp., Japan

Vincent L. Pecoraro University of Michigan

Willem H. Koppenol ETH, Zürich

Donald A. Bryant Penn State University

Walter Weyler Genencor, Inc.

Isiah M. Warner Louisiana State University

William A. Pryor LSU Biodynamics Institute

Victor L. Davidson U of MS Med School

Thomas H. Fife U Southern California

James Robertson Bristol Myers Squibb

Brian T. Buckley Rutgers University

David Stanbury Auburn University

Takashi Yonetani University of Pennsylvania

Thomas C. Bruice UC Santa Barbara

Jorge Colón UPR @ Rio Piebras

Anne Ehret Polaroid Corporation

John S. Olson Rice University

Michelle Perrella Universita di Milano

Charles B. Grissom University of Utah

John E. Wampler University of Georgia

Shelagh Ferguson-Miller Michigan State University

Lawrence J. Parkhurst University of Nebraska

Norman Hunter Univ. of Western Ontario

Mark Chavez Walter Reed Army Institute

Thomas J. Meyer UNC Chapel Hill

Clifford J. Unkefer Los Alamos National Labs

H. Holden Thorp UNC Chapel Hill

D. Wayne Bolen UT Medical Branch

Dennis Riley Monsanto Corporation

H. James Harmon Oklahoma State University

Robert Blake, II Xavier University of LA

QUOTES FROM LETTERS AND TELEPHONE CONVERSATIONS BY RSM OWNERS

The instrument's sensitivity is excellent: even an absorbance change of 0.003 is meaningful, because the S/N is so good. The OLIS RSM 1000 + OLIS USA stopped-flow was clearly the choice for our applications. The OLIS reputation for helpfulness, quality, and an interest in good science was an important factor in our decision. Dick DeSa may be the next Arnold Beckman.

Charles B. Grissom, Ph.D., University of Utah

From the moment I saw one, I wanted one. It completely changes the way one thinks about performing absorbance measurements. The machine is remarkably simple in design and powerful in concept. The ability to make absorbance, luminescence, fluorescence, stopped-flow, and linear/circular dichroism measurements make it the most versatile spectrophotometer on the market today.

Donald A. Bryant, Ph.D., Penn. State

We have been using it as though it has always been in the lab. [And,] we already have publishable data in two areas! The first publishable data came from the runs [one of my postdocs] did while the instrument was being set up and tested. [Second,] we needed some supporting data for a poster to be presented next week at the ASBMB meeting. A couple hours later, done, analyzed, and included on the poster I want to thank you ...for putting up with my doubts, real and imagined, and again for graciously allowing me to visit and use the instrument.

Paul F. Cook, Ph.D., University of Oklahoma (one week after delivery of his RSM)

One day with my RSM saved me from declaring my system an $A \rightarrow B$ by immediately showing me that there is an intermediate only 4–5 nm away from where all my fixed-wavelength work had been done; I had missed it entirely. Multiple wavelengths are great...they are making all the difference in the world! Kudos to DeSa! I can't praise the RSM enough.

Michael D. Johnson, Ph.D., NMSU

I am absolutely impressed with its current performance... The RSM acquires data in seconds that formerly took hours. Where I spent days and weeks (literally!) converting, fitting, plotting, etc., data, the RSM software does the job in a matter of seconds!

H. James Harmon, Ph.D., Oklahoma State

The RSM design is such that it can not only be used as a spectrophotometer but also quickly rearrange to become a rapid-scan fluorescence spectrophotometer due to the high sensitivity of the photomultiplier tubes as the detector rather than diode array devices. [Secondly,] the RSM. replacing the rotating disk slits with a fixed slit, becomes a microsecond kinetic spectrophotometer with selected fixed wavelengths, which is a very useful feature for photoactivated systems like flash photolysis and fluorescence and phosphorescence quenching kinetics. Another important factor in choosing OLIS is their outstanding analysis software. The RSM system may be a bit more expensive than a diode array rapid-scan system, but it is worthy of investing extra. You would not regret it.

Takashi Yonetani, Ph.D., U. Penn., (in a letter to a colleague recommending the RSM)